Единица четное или нечетное число. Нумерология

21.06.2020 Деньги

Прежде чем говорить про четные и нечетные числа, стоит уяснить несколько моментов о том, какие вообще группы чисел бывают. Это необходимо для того, чтобы не пытаться выяснять четность дроби.

С каких чисел начинается изучение в основной школе?

Первыми идут натуральные. Они также сначала появились исторически. Человечеству было необходимо подсчитывать предметы. Причем при счете ноль не используется, поэтому он не входит в группу натуральных чисел. Здесь все целые, которые больше единицы.

Именно для них впервые дается определение четности. Чтобы понять, какое число нечетное, нужно запомнить признак четного. Оно заканчивается на одну из цифр: 0, 2, 4, 6, 8. Все остальные будут нечетными. Минимальное из них равно единице. Максимального не существует.

Какие числа идут дальше?

Целые. В их множество входит уже ноль и все отрицательные числа. Цепочка натуральных чисел была ограничена слева, а вправо продолжалась бесконечно. С целыми оказывается бесконечное количество чисел и слева от нуля.

В этот момент немного меняется определение четности. Оно теперь должно делиться на два без остатка. Значит, нечетные числа при делении на два дают ответ с остатком.

Причем даже вводится общая запись: для четных — 2n, нечетные — (2n+1). Если для натуральных не существует только максимального четного или нечетного, то у целых нет и минимального.

А что потом?

Рациональные (другое название - вещественные) числа. Кроме уже упомянутых, в это множество входят еще и дроби. То есть числа, которые можно представить в виде двух. Первое из них является числителем и представляется в виде целого числа. Второе — знаменатель, который никогда не равен нулю.

Кстати, для них не вводится понятие четности. Поэтому нечетные числа, записанные в виде дроби, не существуют вовсе.

Какие результаты дают действия с четными и нечетными числами?

Их можно рассмотреть в порядке усложнения арифметического действия. Тогда первым и вторым пойдут сложение и вычитание. Неважно, какое из них выполняется, ответ будет зависеть только от начальной пары чисел. К примеру, если исходные числа четные, то результат действия будет делиться на два. Такой же итог будет, если стоит разность или сумма нечетных чисел. Чтобы получить нечетное число, придется складывать или вычитать четное с нечетным.

Это легко можно проверить, используя их общую запись. Например, сложение двух четных чисел: 2n+2n = 4n = 2*2n. Здесь 2n — четное число, которое еще умножается на два. Значит, оно точно будет делиться нацело на двойку. То есть ответ — четный.

При сложении четного с нечетным имеем такую запись: 2n + (2n + 1) = 4n + 1. Первое слагаемое — четное число, к которому прибавляется единица. Последнее слагаемое не даст разделить этот результат на два нацело.

Третье действие — умножение. При его выполнении всегда будет четный ответ, если есть хотя бы один множитель четный. В ситуации, когда перемножаются два нечетных числа, результатом окажется нечетное.

Для иллюстрации последнего потребуется сделать такую запись: (2n + 1) * (2n + 1) = 4n + 2n + 2n + 1 = 8n + 1. Опять первое слагаемое представляет собой четное число, а единица сделает его нечетным.

С четвертым действием — делением - все не так однозначно. Начать можно с двух четных. Во-первых, может получиться дробь, тогда о четности речи не идет. Во-вторых, результатом бывает целое число. Но и тогда однозначного ответа на вопрос о будущей четности получить невозможно. Оценить ее можно только после выполнения деления. Ответ может быть как четным, так и нечетным.

Если делится нечетное число на четное, то ответ оказывается всегда дробным. Значит, его четность не определяется.

Когда в делении участвуют нечетные числа, то результатом также может оказаться дробь. Но если ответ целый, то он обязательно будет нечетным.

При делении четного на нечетное, как в предыдущей ситуации, возможно два варианта: дробь или целое число. Во втором случае оно всегда будет четным.

Что означают чётные и нечётные числа в духовной нумерологии. В изучении языка чисел это очень важная тема! Чем по своей сути чётные числа отличаются от нечётных чисел?

Нечётные числа в нумерологии – солнечные, мужской природы, кислотные, электрические, динамичные. При группировании нечётных чисел, одно число останется без своей пары (1 и 3; 5 и 7; 9). Эти числа являются слагаемые (их складывают с чем-либо).

Чётные числа – лунные, женской природы, щелочные, магнетические, статичные. Числа данной группы вычитаемые или уменьшаемые. Они статичны и остаются без движения, потому что имеют чётные группы пар (2 и 4; 6 и 8).

Чётные числа в нумерологии

Общеизвестно, что чётные числа – те числа которые делятся на два. А что означают чётные числа относительно духовной нумерологии? Какова нумерологическая суть "деления на два"? А суть в том, что все числа которые делятся на два, несут в себе некоторые свойства двойки.

У цифры 2 несколько значений. Во-первых, это самая "человечная" цифра в нумерологии. То есть, цифра 2 отражает в себе всю гамму человеческих слабостей, недостатков и достоинств – точнее, то, что в обществе принято считать достоинствами и недостатками, "правильностями" и "неправильностями".

А поскольку данные ярлыки "правильности" и "неправильности" отражают наши ограниченные взгляды на мир, то и двойка вправе считаться самым ограниченным, самым "тупым" числом в нумерологии. Отсюда понятно, что чётные числа гораздо более "твердолобы" и прямолинейны, чем их нечётные собратья, которые на два не делятся.

Это, впрочем, не говорит о том, что чётные числа хуже нечётных чисел. Просто они другие и отражают иные формы человеческого бытия и сознания в сравнении с нечётными числами. Чётные числа в духовной нумерологии всегда подчиняются законам обычной, материальной, "земной" логики. Почему?

Потому что другое значение двойки: стандартно-логическое мышление. И все чётные числа в духовной нумерологии так или иначе, подчиняются определённым логическим правилам восприятия действительности.

Элементарный пример: если камень подбросить вверх, он, набрав определённую высоту, устремится затем к земле. Так "думают" чётные числа. А нечётные числа запросто предположат, что камень улетит в космос; или не долетит, а застрянет где-нибудь в воздухе... надолго, на века. Или просто растворится! Чем нелогичнее гипотеза, тем ближе она к нечётным числам.

Нечётные числа в нумерологии

Нечётными называют числа, которые не делятся на два. С позиции духовной нумерологии нечётные числа подчиняются не материальной, а духовной логике.

Что, кстати, даёт пищу для размышления: почему число цветов в букете для живого человека нечётное, а для мёртвого – чётное... Не потому ли, что материальная логика (логика в рамках "да-нет") мертва относительно души человека?

Видимые совпадения материальной логики и духовной происходят очень часто. Но пусть это не вводит вас в заблуждение. Логика духа, то есть логика нечётных чисел, никогда в полной мере не прослеживается на внешних, физических уровнях человеческого бытия и сознания.

Возьмём для примера число 3 – число любви. Мы разглагольствуем о любви на каждом шагу. Мы признаёмся в ней, мечтаем о ней, украшаем ею свою жизнь и чужую жизнь.

Но что на самом деле мы знаем о любви? О той всепроникающей Любви, которая пронизывает собой все сферы Мироздания. Разве мы можем согласиться и принять, что в ней столько же холода, сколько и тепла, столько же ненависти, сколько доброты?! В состоянии ли мы осознать, что именно эти парадоксы составляют высшую, творческую суть Любви?!

Парадоксальность – вот одно из ключевых свойств нечётных чисел. В толковании нечётных чисел надо понимать: не всегда то, что кажется человеку, является действительно существующим. Но в то же время, если что-то кому-то кажется, значит оно уже существует. Есть различные уровни Существования, и иллюзия – один из них...

Кстати, зрелость ума характеризуется способностью воспринимать парадоксы. Поэтому для объяснения нечётных чисел требуется чуть больше "мозгов", чем для объяснения чётных чисел.

В чём главное отличие чётных чисел от нечётных?

Чётные числа более предсказуемы (кроме числа 10), основательны и последовательны. События и люди, связанные с чётными числами, более устойчивы и объяснимы. Вполне доступны для внешних изменений, но только для внешних! Внутренние перемены – область нечётных чисел...

Нечётные числа – взбалмошны, свободолюбивы, неустойчивы, непредсказуемы. Они всегда преподносят сюрпризы. Вот вроде и знаешь смысл какого-то нечётного числа, а оно, это число, вдруг начинает вести себя так, что заставляет тебя заново пересмотреть чуть ли не всю твою жизнь...

Введение. Понятие чётности очень важно для развития математической культуры школьника. Теоретически это понятие простое и обычно не вызывает трудностей. Задачи же, связанные с чётностью, могут варьироваться от самых простых до очень сложных. Эти зада-чи позволяют на простом материале ввести школьника в разно-образный круг математических идей.

Вводная задача 1. Николай с сыном и Пётр с сыном пошли на рыбалку. Николай поймал столько же рыб, сколько его сын, а Пётр — столько же, сколько его сын. Все вместе поймали 27 рыб. Сколько рыб поймал Николай?

Решение. Сначала кажется, что в задаче не хватает данных: два неизвестных и од-но уравнение. Затем кто-то должен сообразить, что условия задачи проти-воречивы. Действительно, отцы поймали столько же рыб, сколько и сыновья. Но тогда общее число рыб должно быть чётным, а по условию оно нечётно.

Вариант рассуждения: Николай с сыном вместе поймали чётное число рыб. То же верно и для Петра с сыном. Значит, и сумма этих чисел чётна. (Если школьники сами не догадаются до одного из этих соображений, следует им немного подсказать).

Но никакого противоречия нет! К противоречию привело неявное пред-положение о том, что на рыбалке было четыре человека. Но их могло быть и три (Николай — сын или отец Петра). Из условия теперь следует, что все поймали рыб поровну, то есть по 9 штук. С этой задачей (но не с её решением) желательно ознакомить школьников за несколько дней до начала первого занятия.

1. Определение четных и нечетных чисел

Первое занятие по теме «Четность-нечетность» можно начать с забавного вопроса: «Нуль - четное число или нечетное?» Ребята задумываются… Тогда приходится начать дискуссию: «Нуль делится на 2»? Через некоторое время дети отвечают: «Да». Тогда задаю еще раз тот же вопрос: «Так нуль — число четное или нечетное»? И тут уже всё понятно: «Четное»!

Понятие четности чисел известно с глубокой древности и ему часто придавалось мистическое значение. Так, в древнекитайской мифологии нечетные числа соответствовали ян, что означало небо, благоприятность, а четные - это инь, земля, изменчивость, неблагоприятность. В Европе и некоторых восточных странах считается, что четное количество даримых цветов приносит счастье. В России четное количество цветов принято приносить лишь на похороны умершим. В случаях, когда в букете много цветов, четность или нечетность их количества уже не играет такой роли.

Далее идет обсуждение вводной задачи. Она позволяет начать разговор об определении и свойствах чётности. Прежде всего, мы использовали тот факт, что число вида п + п чётно (отцы поймали столько же рыб, сколько сыновья, поэтому вместе они поймали чётное число рыб).

Вот ещё одна задача, иллюстрирующая ту же идею.

Задача 2. Кузнечик прыгал вдоль прямой и вернулся в ис-ходную точку. Все прыжки имеют одинаковую длину. Докажите, что он сделал чётное число прыжков.

Решение. Сколько раз он прыгнул вправо, столько же прыг-нул и влево (так как вернулся в исходную точку)… Откуда следует, что число вида п + п = 2п чётно? А это про-сто определение.

Определение . Целое число называется четным , если оно делится на 2 без остатка, и нечетным , если оно на 2 не делится.

Таким образом, «общий вид» чётного числа 2п , где п — произвольное целое число. Речь идёт именно о целых, а не только о натуральных (то есть целых положительных) числах. В частности, важно понимать, что 0 — тоже чётное число.

Каков же «общий вид» нечётного числа? 2n + 1. Действитель-но, если от нечётного числа отнять 1, то оно станет чётным, то есть нечётное число равно сумме чётного числа 2п и единицы. Часто используется запись нечётного числа и в виде 2п — 1.

2. Свойства четных и нечетных чисел

Свойство 1 . Из определения чётного числа сразу следует, что произведе-ние любого (целого) числа на чётное число чётно . Доказательство: k . 2п = 2(kn ).

Свойство 2 . Несколько более сложно проверить, что произведение двух не-чётных чисел нечётно . Доказательство: (2k + l)(2n + 1) = 2(2k п + k + п ) + 1.

Определение . Два целых числа называются числами одинаковой четности , если оба четные или оба нечетные. Два целых числа называют числами разной четности , если одно из них четное, а другое нечетное.

Свойство 3. Сумма двух чисел разной чётности нечётна.

Доказательство: 2k + 2п + 1 = 2(k + п ) + 1 = 2m + 1, где m = k + п - целое число. Сумма нечетна.

Свойство 4. Сумма двух чисел одной чётности чётна.

Доказательство: 2k + 2п = 2(k + п ) = 2m , где m = k + п — целое число. Таким образом, сумма — четное число.

2k + 1 + 2п + 1 = 2(k + п + 1) = 2m , где m = k + п + 1 — целое число. Таким образом, сумма — четное число.

Обратные утверждения . Затем можно предложить ребятам сформулировать и доказать утверждения, обратные утверждениям о четности суммы.

Если сумма двух чисел нечётна, то слагаемые имеют разную чётность. Доказательство. Действительно, если бы они имели оди-наковую чётность, то сумма была бы чётной.

Если сумма двух чисел чётна, то слагаемые имеют одинако-вую чётность. Доказательство аналогично.

Перейдем к следующему свойству четных и нечетных чисел.

Задача 3 (подготовительная). Сумма трех чисел нечётна. Сколько слагаемых нечётно? Ответ: одно или три.

Решение. Нетрудно привести примеры, показывающие, что оба случая возможны. Остальные два случая (нечётных слагае-мых два или их нет совсем) легко приводятся к противоречию. Теперь можно перейти к наиболее общей формулировке.

Свойство 5. Чётность суммы совпадает с чётностью количества не-чётных слагаемых.

Доказательство. 2а 1 + 1 + 2а 2 + 1 + … + 2а п + 1 = 2(а 1 + а 2 + … + а п ) + п . Первое число - четное, потому что оно представляет собой произведение, одним из его сомножителей является число два, а второе число - четное по условию (n - четное число слагаемых). Сумма двух четных чисел - четная.

Аналогичные рассуждения приводятся для нечетного количества нечетных слагаемых. Учащиеся делают вывод: нечетность суммы совпадает с нечетностью количества нечетных слагаемых .

3. Задачи на применение свойств четности и нечетности

Задача 4. Хозяйка купила общую тетрадь объемом 96 листов и пронумеровала все ее страницы по порядку числами от 1 до 192. Щенок Антошка выгрыз из этой тетради 25 листов и сложил все 50 чисел, которые на них написаны. Могло ли у него получиться 1990?

Решение. На каждом листе сумма номеров страниц нечетна, а сумма 25 нечетных чисел - нечетна. Поэтому число 1990 у Антошки получиться не могло.

Задача 5. В школе 1688 учащихся, причем мальчиков на 373 больше, чем девочек. Доказать, что такого не может быть.

Решение. Если девочек х , то всего учеников 2х + 373, а это число нечетное как сумма четного и нечетного чисел.

Задача 6. Четно или нечетно число 1 - 2 + 3 - 4 + 5 - 6 + … + 993?

Решение. Разность 1 - 2 имеет ту же четность, что и сумма 1 + 2, разность 3 - 4 - ту же четность, что и сумма 3 + 4, и т.д. Поэтому данная сумма имеет ту же четность, что и сумма 1 + 2 + 3 + 4 + 5 + 6 + … + 993. Из 993 слагаемых последней суммы 496 четных и 497 нечетных, следовательно, сумма нечетна.

Задача 7. В ряд выписаны числа от 1 до 10. Можно ли расставить между ними знаки плюс и минус, чтобы получилось выражение, равное нулю?

Решение: Нет, нельзя. Четность полученного выражения всегда будет совпадать с четностью суммы 1 + 2 + ... + 10 = 55. Данная сумма всегда будет нечетной , а 0 - четное число.

Задача 8. Можно ли разменять 100 рублей при помощи 25 монет достоинством 1 и 5 рублей?

Решение. Нет, т.к. сумма нечетного количества нечетных слагаемых - нечетное число.

Задача 9 . В пятиэтажном доме с четырьмя подъездами подсчитали число жителей на каждом этаже и, кроме того, в каждом подъезде. Могут ли все полученные 9 чисел быть нечетными?

Решение. Обозначим число жителей на этажах соответственно через a 1 , a 2 , a 3 , a 4 , a 5 , a число жителей в подъездах соответственно через b 1 , b 2 , b 3 , b 4 . Тогда общее число жителей дома можно подсчитать двумя способами — по этажам и по подъездам:

a 1 + a 2 + a 3 + a 4 + a 5 = b 1 + b 2 + b 3 + b 4 . Если бы все эти 9 чисел были нечетными, то сумма в левой части записанного равенства была бы нечетной, а сумма в правой части — четной. Следовательно, это невозможно.

Задача 10. Верно ли равенство 1 2 + 2 3 + 3 4 + … + 99 100 = 20002007?

Решение. Произведения четного и нечетного чисел четны, а сумма четных слагаемых всегда четна.

Задача 11. Четна или нечетна сумма всех натуральных чисел от 1 до 17?

Решение. Из 17 натуральных чисел 8 четных: 2, 4, 6, 8, 10, 12, 14, 16, а остальные 9 чисел нечетны. Сумма всех этих четных чисел четна, а сумма девяти нечетных - нечетна. Тогда сумма всех 17 чисел нечетна как сумма четного и нечетного чисел.

Задача 12. Кузнечик прыгает по прямой: первый раз на 1 см, второй раз на 2 см и т.д. Может ли он через 25 прыжков вернуться на прежнее место?

Решение. Чтобы вернуться на старое место, общее количество сантиметров должно быть четно, а сумма 1 + 2 + 3 + … + 25 нечетна. Поэтому вернуться на прежнее место кузнечик не сможет.

Задачи для самостоятельного решения

Задача 13. Можно ли разменять 25 рублей десятью монетами достоинством 1, 3 и 5 руб.?

Решение. Если мы сложим четное число каких-либо целых чисел, то получим число четное, а 25 — нечетное число. Поэтому разменять 25 руб. таким образом нельзя.

Задача 14. В магазин «Все для собак и кошек» привезли новые игрушки. Могут ли десять игрушек ценой в 3, 5 или 7 рублей стоить в сумме 53 рубля?

Решение. Сумма четного количества нечетных чисел четна. У нас есть 10 чисел (цена одной игрушки), все они нечетные, значит, их сумма должна быть четна. Но 53 - число нечетное, поэтому получить его в виде суммы 10 нечетных чисел нельзя.

Задача 15. У Антона было 5 плиток шоколада. Может ли Антон, поделив каждую плитку на 9, 15 или 25 кусочков, получить всего 100 кусков шоколада?

Решение. Нет, т.к. если сложить 5 нечетных чисел, получим нечетный результат. А число 100 четно.

Задача 16. У Нины было 11 плиток шоколада фабрики "Краскон". Может ли Нина, поделив каждую плитку на 7, 13 или 21 кусочков, получить всего 100 кусков шоколада?

Решение. Нет, т.к. если сложить 11 нечетных чисел, получим нечетный результат, а 100 - четное число.

Задача 17. Доказать, что в равенстве 1 ? 2 ? 3 ? 4 ? 5 ? 6 ? 7 ? 8 ? 9 =20, «?» - это знаки плюс или минус, допущена ошибка.

Решение. В выражении нечетное количество нечетных чисел. Ответ должен быть нечетным числом.

4. Задачи на чередование

Свойства чередования:

  1. Если в некоторой замкнутой цепочке чередуются объекты двух видов, то их четное число (и каждого вида поровну).
  2. Если в некоторой замкнутой цепочке чередуются объекты двух видов:
  • начало и конец цепочки разных видов, то в ней четное число объектов;
  • начало и конец одного вида, то нечетное число.

3. Обратно: по четности длины чередующейся цепочки можно узнать, одного или разных видов её начало и конец.

Задача 18. Может ли вращаться система из 7 шестеренок, если первая сцеплена со второй, вторая с третьей и т.д., а седьмая сцеплена с первой?

Решение. Нет. Если первая вращается по часовой стрелке, то все нечетные шестеренки должны вращаться по часовой стрелке, а первая и седьмая одновременно вращаться по часовой стрелке не могут.

Задача 19. Может ли конь пройти с поля a1 на поле h8, побывав по дороге на каждом из остальных полей ровно один раз?

Решение. Нет, не может. Так как конь должен сделать 63 хода, то последним (нечетным) ходом он встанет на поле другой четности, нежели a1; но h8 имеет тот же цвет.

Задача 20. Все костяшки домино выложили (соблюдая правила игры) в одну длинную цепь. На одном конце этой цепи оказалось 5 очков. Сколько очков может быть на другом конце цепи?

Решение. Если где-то лежит костяшка ∗ − 5, то рядом с ней лежит костяшка 5 − ∗ — возникает разбиение на пары. Сколько костяшек с пятеркой всего? Все ли они в этом разбиении на пары участвуют?

Задачи на разбиение на пары

Свойство: если предметы можно разбить на пары, то их количество четно.

Задача 21. Можно ли нарисовать 9 - звенную замкнутую ломаную, каждое звено которой пересекается ровно с одним из остальных звеньев?

Решение. Если бы такое было возможно, то все звенья ломаной разбились бы на пары пересекающихся. Однако тогда число звеньев должно быть четным.

Задача 22. Семь тринадцатируков с планеты Тринадцатирук решили устроить турнир по армреслингу. Смогут ли они одновременно провести поединки для всех своих рук, чтобы все руки принимали участие, и в каждом поединке встречалось ровно две руки?

Решение. Тринадцатируки не смогут провести поединки для всех рук одновременно, так как в каждом поединке принимает участие две руки, а всего рук 13 · 7 = 91.

Задача 23. В народной дружине 100 человек и каждый вечер трое из них идут на дежурство. Может ли через некоторое время оказаться так, что каждый с каждым дежурил ровно один раз?

Решение. Так как на каждом дежурстве, в котором участвует данный человек, он дежурит с двумя другими, то всех остальных можно разбить на пары. Однако 99 - нечетное число.

Целое число называется четным, если оно делится на 2; в противном случае оно называется нечетным. Таким образом, четными числами являются

и нечетными числами -

Из делимости четных чисел на два вытекает, что каждое четное число можно записать в виде , где символ обозначает произвольное целое число. Когда некоторый символ (подобно букве в рассматриваемом нами случае) может представлять любой элемент некоторого определенного множества объектов (множества целых чисел в нашем случае), мы говорим, что областью значений этого символа является указанное множество объектов. В соответствии с этим в рассматриваемом случае мы говорим, что каждое четное число может быть записано в виде , где область значений символа совпадает с множеством целых чисел. Например, четные числа 18, 34, 12 и -62 имеют вид , где соответственно равно 9, 17, 6 и -31. Нет особой причины использовать здесь именно букву . Вместо того чтобы говорить, что четными числами являются целые числа вида равным образом можно было бы сказать, что четные числа имеют вид или или

При сложении двух четных чисел в результате получается тоже четное число. Это обстоятельство иллюстрируется следующими примерами:

Однако для доказательства общего утверждения о том, что множество четных чисел замкнуто относительно сложения, недостаточно набора примеров. Чтобы дать такое доказательство, обозначим одно четное число через , а другое - через . Складывая эти числа, можно написать

Сумма записана в виде . Из этого видна ее делимость на 2. Было бы недостаточно написать

поскольку последнее выражение представляет собой сумму четного числа и того же самого числа. Иными словами, мы доказали бы, что удвоенное четное число есть опять четное число (в действительности делящееся даже на 4), в то время как нужно доказать, что сумма любых двух четных чисел есть число четное. Поэтому мы использовали обозначение для одного четного числа и для другого четного числа с тем, чтобы указать, что эти числа могут быть и разными.

Какое обозначение можно использовать для записи любого нечетного числа? Отметим, что при вычитании 1 из нечетного числа получается четное число. Поэтому можно утверждать, что любое нечетное число записывается виде Запись такого рода не единственна. Подобным же образом мы могли бы заметить, что при прибавлении 1 к нечетному числу получается четное число, и могли бы заключить отсюда, что любое нечетное число записывается в виде

Аналогично можно сказать, что любое нечетное число записывается в виде или или и т. д.

Можно ли утверждать, что каждое нечетное число записывается в виде Подставляя в эту формулу вместо целые числа

получаем следующее множество чисел:

Каждое из этих чисел нечетно, однако ими не исчерпываются все нечетные числа. Например, нечетное число 5 не может быть так записано. Таким образом, неверно, что каждое нечетное число имеет вид , хотя каждое целое число вида нечетно. Аналогично неверно, что каждое четное число записывается в виде где область значений символа k есть множество всех целых чисел. Например, 6 не равно какое бы целое число ни взять в качестве А. Однако каждое целое число вида четно.

Соотношение между этими утверждениями - то же самое, что и между утверждениями «все кошки - животные» и «все животные - кошки». Ясно, что первое из них верно, а второе - нет. Это соотношение будет обсуждаться дальше при разборе утверждений, включающих фразы «тогда», «только тогда» и «тогда и только тогда» (см. § 3 гл. II).

Упражнения

Какие из следующих утверждений верны и какие ложны? (Предполагается, что областью значений символов является совокупность всех целых чисел.)

1. Каждое нечетное число может быть представлено в виде

2. Каждое целое число вида а) (см. упр. 1) нечетно; это же имеет место для чисел вида б), в), г), д) и е).

3. Каждое четное число может быть представлено, в виде

4. Каждое целое число вида а) (см. упр. 3) четно; то же самое имеет место для чисел вида б), в), г) и д).


Во вселенной существуют пары противоположностей, которые являются важным фактором ее устройства. Основные свойства, которые нумерологи приписывают нечетным (1, 3, 5, 7, 9) и четным (2, 4, 6, 8) числам, как парам противоположностей, следующие:

Нечетные числа обладают гораздо более яркими свойствами. Рядом с энергией "1", блеском и удачливостью "3", авантюрной подвижностью и многогранностью "5", мудростью "7" и совершенством "9" четные числа выглядят не столь ярко. Насчитывается 10 основных пар противоположностей, существующих во Вселенной. Среди этих пар: четное - нечетное, один - много, правое - левое, мужское - женское, добро - зло. Один, правое, мужское и доброе ассоциировалось с нечетными числами; много, левое, женское и злое - с четными.

Нечетные числа обладают некой производящей серединой, в то время как в любом четном числе есть воспринимающее отверстие как бы лакуна внутри себя. Мужские свойства фаллических нечетных чисел вытекают из того факта, что они сильнее четных. Если четное число расщепить пополам, то, кроме пустоты, посередине ничего не останется. Нечетное число разбить непросто, потому что посередине остается точка. Если же соединить вместе четное и нечетное числа, то победит нечетное, так как результат всегда будет нечетным. Именно поэтому нечетные числа обладают мужскими свойствами, властными и резкими, а четные - женскими, пассивными и воспринимающими. Нечетных чисел нечетное число: их пять. Четных чисел четное число - четыре.

Нечетные числа - солнечные, электрические, кислотные и динамичные. Они являются слагаемыми; их с чем либо складывают. Четные числа - лунные, магнетические, щелочные и статичные. Они являются вычитаемыми, их уменьшают. Они остаются без движения, потому что имеют четные группы пар (2 и 4; 6 и 8).

Если мы сгруппируем нечетные числа, одно число всегда останется без своей пары (1 и 3; 5 и 7; 9). Это делает их динамичными.

Два подобных числа (два нечетных числа или два четных) не являются благоприятными.

Четное + четное = четное (статичное) 2+2=4
четное + нечетное = нечетное (динамичное) 3+2=5
нечетное + нечетное = четное (статичное) 3+3=6

Некоторые числа дружественны; другие противостоят друг другу. Взаимоотношения чисел определяются отношениями между планетами, которые ими управляют. Когда два дружественных числа соприкасаются, их сотрудничество не очень продуктивно. Подобно друзьям, они расслабляются - и ничего не происходит. Но когда в одной комбинации находятся враждебные числа, они заставляют друг друга быть настороже и побуждают к активным действиям; таким образом, эти два человека работают намного больше. В таком случае, враждебные числа оказываются на самом деле друзьями, а друзья - настоящими врагами, тормозящими прогресс. Нейтральные числа остаются неактивными. Они не дают поддержки, не вызывают и не подавляют активность.

24. Guest, 2020-01-19 04:03:11