Какие числа делятся на 7 с остатком. Основные признаки делимости

m и n имеется такое целое число k и nk = m , то число m делится на n

Применение навыков делимости упрощает вычисления, и соразмерно повышает скорость их исполнения. Разберем детально основные характерные особенности делимости .

Наиболее незамысловатый признак делимости для единицы : на единицу делится все числа . Так же элементарно и с признаками делимости на два , пять , десять . На два можно поделить четные число либо то у которого итоговая цифра 0, на пять - число у которого конечная цифры 5 или 0. На десять поделятся только те числа, у которых заключительная цифра 0, на 100 — только те числа, у которых две заключительных цифры нули, на 1000 — только те, у которых три заключительных нуля.

Например:

Цифру 79516 можно разделить на 2, так как она заканчивается на 6— четное число ; 9651 не поделится на 2, так как 1 - цифра нечетная; 1790 поделится на 2, так как конечная цифра нуль. 3470 поделится на 5 (заключительная цифра 0); 1054 не поделится на 5 (конечная цифра 4). 7800 поделится на 10 и на 100; 542000 поделится на 10, 100, 1000.

Менее широко известны, но весьма удобны в использовании характерные особенности делимости на 3 и 9 , 4 , 6 и 8, 25 . Имеются так же характерные особенности делимости на 7, 11, 13, 17, 19 и так далее, но ими пользуются на практике значительно реже.

Характерная особенность деления на 3 и на 9 .

На три и/или на девять без остатка разделятся те числа, у которых результат сложения цифр кратен трем и/или девяти.

Например :

Число 156321, результат сложения 1 + 5 + 6 + 3 + 2 + 1 = 18 поделится на 3 и поделится на 9, соответственно и само число можно поделить на 3 и 9. Число 79123 не поделится ни на 3, ни на 9, так как сумма его цифр (22) не поделится на эти числа.

Характерная особенность деления на 4, 8, 16 и так далее .

Цифру можно без остатка разделить на четыре , если у нее две последние цифры нули или являются числом , которое можно поделить на 4. Во всех остальных вариантах деление без остатка не возможно.

Например :

Число 75300 поделится на 4, так как последние две цифры нули; 48834 не делится на 4, так как последние две цифры дают число 34, не делящееся на 4; 35908 делится на 4, так как две последние цифры 08 дают число 8, делящееся на 4.

Схожий принцип пригоден и для признака делимости на восемь . Число делится на восемь, если три последние его цифры нули или образуют число, делящееся на 8. В прочих случаях частное, полученное от деления, не будет целым числом.

Такие же свойства для деления на 16, 32, 64 и т. д., но в повседневных вычислениях они не используются.

Характерная особенность делимости на 6.

Число делится на шесть , если оно делится и на два и на три, при всех прочих вариантах, деление без остатка невозможно.

Например:

126 поделится на 6, так как оно делится и на 2 (заключительное четное число 6), и на 3 (сумма цифр 1 + 2 + 6 = 9 делится на три)

Характерная особенность делимости на 7.

Число делится на семь если разность его удвоенного последнего числа и "числа, оставшегося без последней цифры"делится на семь, то и само число делится на семь.

Например :

Число 296492. Возьмем последнюю цифру "2", удваиваем, выходит 4. Вычитаем 29649 - 4 = 29645. Проблематично выяснить делится ли оно на 7, следовательно анализируемом снова. Далее удваиваем последнюю цифру "5", выходит 10. Вычитаем 2964 - 10 = 2954. Результат тот же, нет ясности, делится ли оно на 7, следовательно продолжаем разбор. Анализируем с последней цифрой "4", удваиваем, выходит 8. Вычитаем 295 - 8 = 287. Сверяем двести восемьдесят семь - не делится на 7, в связи с этим продолжаем поиск. По аналогии последнюю цифру "7", удваиваем, выходит 14. Вычитаем 28 - 14 = 14. Число 14 делится на 7, итак исходное число делится на 7.

Характерная особенность делимости на 11 .

На одиннадцать делятся только те числа, у которых результат сложения цифр, размещающихся на нечетных местах, либо равен сумме цифр, размещающихся на четных местах, либо отличен на число, делящееся на одиннадцать.

Например:

Число 103 785 делится на 11, так как сумма цифр, размещающихся на нечетных местах, 1 + 3 + 8 = 12 равна сумме цифр, размещающихся на четных местах 0 + 7 + 5 = 12. Число 9 163 627 делится на 11, так как сумма цифр, размещающихся на нечетных местах, есть 9 + 6 + 6 + 7 = 28, а сумма цифр, размещающихся на четных местах, есть 1 + 3 + 2 = 6; разность между числами 28 и 6 есть 22, а это число делится на 11. Число 461 025 не делится на 11, так как числа 4 + 1 + 2 = 7 и 6 + 0 + 5 = 11 не равны друг другу, а их разность 11 - 7 = 4 не делится на 11.

Характерная особенность делимости на 25 .

На двадцать пять поделятся числа , две заключительные цифры которых нули или составляют число, которое можно разделить на двадцать пять (т. е. числа, оканчивающиеся на 00, 25, 50 или 75). При прочих вариантах - число невозможно поделить целиком на 25.

Например:

9450 поделится на 25 (оканчивается на 50); 5085 не делится на 25.

Математика в 6 классе начинается с изучения понятия делимости и признаков делимости. Часто ограничиваются признаками делимости на такие числа:

  • На 2 : последняя цифра должна быть 0, 2, 4, 6 или 8;
  • На 3 : сумма цифр числа должна делиться на 3;
  • На 4 : число, образованное последними двумя цифрами, должно делиться на 4;
  • На 5 : последняя цифра должна быть 0 или 5;
  • На 6 : число должно обладать признаками делимости на 2 и на 3;
  • Признак делимости на 7 часто пропускается;
  • Редко таже рассказывают и о признаке делимости на 8 , хотя он аналогичен признакам делимости на 2 и на 4. Чтобы число делилось на 8, необходимо и достаточно, чтобы трёхцифреное окончание делилось на 8.
  • Признак делимости на 9 знают все: сумма цифр числа должна делиться на 9. Что, правда, не развивает иммунитет против всяческих трюков с датами, которые используют нумерологи.
  • Признак делимости на 10 , наверное, самый простой: число должно оканчиваться нулём.
  • Иногда шестиклассникам рассказывают и о признаке делимости на 11 . Нужно цифры числа, стоящие на чётных местах сложить, из результата вычесть цифры, стоящие на нечётных местах. Если результат будет делиться на 11, то и само число делится на 11.
Вернёмся теперь к признаку делимости на 7. Если о нём рассказывают, тот объединяют с признаком делимости на 13 и советуют использовать так.

Берём число. Разбиваем его на блоки по 3 цифры в каждом (самый левый блок может содержать одну или 2 цифры) и попеременно складываем/вычитаем эти блоки.

Если результат делится на 7, 13 (или 11), то и само число делится на 7, 13 (илb 11).

Основан этот способ, как и ряд математических фокусов на том, что 7х11х13 = 1001. Однако что делать с трехзначными числами, для которых вопрос делимости, бывает, тоже не решить без самого деления.

Используя универсальный признак делимости , можно построить относительно простые алгоритмы определения, делится ли число на 7 и другие "неудобные" числа.

Усовершенствованный признак делимости на 7
Чтобы проверить, делится ли число на 7, надо от числа отбросить последнюю цифру и от получившегося результата эту цифру дважды отнять. Если результат делится на 7, то и само число делится на 7.

Пример 1:
Делится ли на 7 число 238?
23-8-8 = 7. Значит, число 238 делится на 7.
Действительно, 238 = 34х7

Это действие можно проводить многократно.
Пример 2:
Делится ли на 7 число 65835?
6583-5-5 = 6573
657-3-3 = 651
65-1-1 = 63
63 делится на 7 (если бы мы этого не заметили, то могли бы сделать ещё 1 шаг: 6-3-3 = 0, а 0 уж точно делится на 7).

Значит, и число 65835 делится на 7.

На основе универсиального признака делимости, можно усовершенствовать признаки делимости на 4 и на 8.

Усовершенствованный признак делимости на 4
Если половина числа единиц в сумме с числом десятков - чётнное число, то число делится на 4.

Пример 3
Делится ли число 52 на 4?
5+2/2 = 6, число чётное, значит, число на 4 делится.

Пример 4
Делится ли число 134 на 4?
3+4/2 = 5, число нечётное, значит, 134 на 4 не делится.

Усовершенствованный признак делимости на 8
Если сложить удвоенное число сотен, число десятков и половину числа единиц, и результат будет делиться на 4, то само число делится на 8.

Пример 5
Делится ли число 512 на 8?
5*2+1+2/2 = 12, число делится на 4, значит, 512 делится на 8.

Пример 6
Делится ли число 1984 на 8?
9*2+8+4/2 = 28, число делится на 4, значит, 1984 делится на 8.

Признак делимости на 12 - это объединение признаков делимсоти на 3 и на 4. Это же работает и для любых n, являющихся произведением взаимнопростых p и q. Чтобы число делилось на n (которое равно произведению pq,актих, что НОД(p,q)=1), одно должно делиться одновремено на p и на q.

Однако будьте внимательны! Чтобы работали составные признаки делимости, множители числа должны быть именно взаимнопростыми. Нельзая сказать, что число делится на 8, если оно делится на 2 и на 4.

Усовершенствованный признак делимости на 13
Чтобы проверить, делится ли число на 13, надо от числа отбросить последнюю цифру и к получившемуся результату её четырежды прибавить. Если результат делится на 13, то и само число делится на 13.

Пример 7
Делится ли на 8 число 65835?
6583+4*5 = 6603
660+4*3 = 672
67+4*2 = 79
7+4*9 = 43

Число 43 не делится на 13, значит, и число 65835 не делится на 13.

Пример 8
Делится ли на 13 число 715?
71+4*5 = 91
9+4*1 = 13
13 делится на 13, значит, и число 715 делится на 13.

Признаки делимости на 14, 15, 18, 20, 21, 24, 26, 28 и прочие составные числа, не являющиеся степенями простых, аналогичны признакам делимости на 12. Мы проверяем делимость на взаимно-простыем множители этих чисел.

  • Для14: на 2 и на 7;
  • Для 15: на 3 и на 5;
  • Для 18: на 2 и на 9;
  • Для 21: на 3 и на 7;
  • Для 20: на 4 и на 5 (или, по-другому, последняя цифра должна быть нулём, а предпоследняя - чётной);
  • Для 24: на 3 и на 8;
  • Для 26: на 2 и на 13;
  • Для 28: на 4 и на 7.
Усовершенствованный признак делимости на 16.
Вместо того, чтобы проверять, делится ли 4-циферное окончание числа на 16, можно сложить цифру единиц с увеличенной в 10 раз цифрой десятков, с учетверённой цифрой сотен и с
увеличенной в восемь раз цифрой тысяч, и проверить, делится ли результат на 16.

Пример 9
Делится ли число 1984 на 16?
4+10*8+4*9+2*1 = 4+80+36+2 = 126
6+10*2+4*1=6+20+4=30
30 не делится на 16, значит, и 1984 не делится на 16.

Пример 10
Делится ли число 1526 на 16?
6+10*2+4*5+2*1 = 6+20+20+2 = 48
48 не делитсся на 16, значит, и 1526 делится на 16.

Усовершенствованный признак делимости на 17.
Чтобы проверить, делится ли число на 17, надо от числа отбросить последнюю цифру и от получившегося результата эту цифру пять раз отнять. Если результат делится на 13, то и само число делится на 13.

Пример 11
Делится ли число 59772 на 17?
5977-5*2 = 5967
596-5*7 = 561
56-5*1 = 51
5-5*5 = 0
0 делится на 17, значит и число 59772 делится на 17.

Пример 12
Делится ли число 4913 на 17?
491-5*3 = 476
47-5*6 = 17
17 делится на 17, значит и число 4913 делится на 17.

Усовершенствованный признак делимости на 19.
Чтобы проверить, делится ли число на 19, надо удвоенную последнюю цифру прибавить к числу, оставшемуся после отбрасывания последней цифры.

Пример 13
Делится ли число 9044 на 19?
904+4+4 = 912
91+2+2 = 95
9+5+5 = 19
19 делится на 19, значит и число 9044 делится на 19.

Усовершенствованный признак делимости на 23.
Чтобы проверить, делится ли число на 23, надо последнюю цифру, увеличенную в 7 раз, прибавить к числу, оставшемуся после отбрасывания последней цифры.

Пример 14
Делится ли число 208012 на 23?
20801+7*2 = 20815
2081+7*5 = 2116
211+7*6 = 253
Вообще-то, уже можно заметить, что 253 - это 23,

Правило

Признак делимости на 7

Чтобы определить, делится ли число на \(\displaystyle 7\), надо:

1. Взять исходное число без последней цифры.

2. К полученному на первом шаге числу прибавить последнюю цифру исходного числа, умноженную на \(\displaystyle 5\).

Число делится на \(\displaystyle 7\) тогда и только тогда, когда сумма, полученная на втором шаге, делится на \(\displaystyle 7\).

Пояснение

Признак делимости на 7 для двузначных чисел

Для двузначного числа признак делимости на \(\displaystyle 7\) можно сформулировать следующим образом:

1. \(\displaystyle {\color{blue}X}{\color{red}Y}\rightarrow {\color{blue}X}\).

2. \(\displaystyle {\color{blue}X}+5\cdot{\color{red}Y}\).

Число \(\displaystyle {\color{blue}X}{\color{red}Y}\) делится на \(\displaystyle 7\) тогда и только тогда, когда число \(\displaystyle {\color{blue}X}+5\cdot{\color{red}Y}\) делится на \(\displaystyle 7\).

Дано число \(\displaystyle 78\). Произведем вычисления в соответствии с описанным выше правилом.

1. Отбрасываем последнюю цифру у исходного числа:

\(\displaystyle {\color{blue}7}{\color{red}8} \rightarrow {\color{blue}7}\).

2. Вычисляем:

\(\displaystyle {\color{blue}7}+5 \cdot {\color{red}8} = 47\).

Число \(\displaystyle 78\) делится на \(\displaystyle 7\) тогда и только тогда, когда число \(\displaystyle 47\) делится на \(\displaystyle 7\).

Но так как \(\displaystyle 47\) не делится на \(\displaystyle 7\), то и \(\displaystyle 78\) также не делится на \(\displaystyle 7\).

Ответ: нет, не делится на \(\displaystyle 7\).

Правило

Признак делимости на 7

Чтобы определить, делится ли число на \(\displaystyle 7\), надо:

1. Взять исходное число без последней цифры.

2. К полученному на первом шаге числу прибавить последнюю цифру исходного числа, умноженную на \(\displaystyle 5\).

Число делится на \(\displaystyle 7\) тогда и только тогда, когда сумма, полученная на втором шаге, делится на \(\displaystyle 7\).

Пояснение

Признак делимости на 7 для четырехзначных чисел

Для четырехзначного числа признак делимости на \(\displaystyle 7\) можно сформулировать следующим образом:

1. \(\displaystyle {\color{blue}X}{\color{red}Y}{\color{green}Z}{\color{blue}W} \rightarrow {\color{blue}X}{\color{red}Y}{\color{green}Z}\).

2. \(\displaystyle {\color{blue}X}{\color{red}Y}{\color{green}Z}+5\cdot{\color{blue}W}\).

Число \(\displaystyle {\color{blue}X}{\color{red}Y}{\color{green}Z}{\color{blue}W}\) делится на \(\displaystyle 7\) тогда и только тогда, когда число \(\displaystyle {\color{blue}X}{\color{red}Y}{\color{green}Z}+5\cdot{\color{blue}W}\) делится на \(\displaystyle 7\).

Дано число \(\displaystyle 2367\). Произведем вычисления в соответствии с описанным выше правилом.

\(\displaystyle {\color{blue}2}{\color{red}3}{\color{green}6}{\color{blue}7} \rightarrow {\color{blue}2}{\color{red}3}{\color{green}6}\).

2. Вычисляем:

\(\displaystyle {\color{blue}2}{\color{red}3}{\color{green}6}+5 \cdot {\color{blue}7} = 271\).

Число \(\displaystyle 2367\) делится на \(\displaystyle 7\) тогда и только тогда, когда число \(\displaystyle 271\) делится на \(\displaystyle 7\).

Проверим, делится ли на на \(\displaystyle 7\) трехзначное число \(\displaystyle 271\, (={\color{blue}X}{\color{red}Y}{\color{green}Z})\). Тогда \(\displaystyle {\color{blue}X=2}, {\color{red}Y=7}, {\color{green}Z=1}\).

1. Отбрасываем последнюю цифру у исходного числа:

\(\displaystyle {\color{blue}2}{\color{red}7}{\color{green}1} \rightarrow {\color{blue}2}{\color{red}7}\).

2. Вычисляем:

\(\displaystyle {\color{blue}2}{\color{red}7}+5 \cdot {\color{green}1} = 32\).

Число \(\displaystyle 271\) делится на \(\displaystyle 7\) тогда и только тогда, когда число \(\displaystyle 32\) делится на \(\displaystyle 7\).

Так как \(\displaystyle 32\) не делится на \(\displaystyle 7\), то и \(\displaystyle 271\) также не делится на \(\displaystyle 7\).

Так как \(\displaystyle 271\) не делится на \(\displaystyle 7\), то и \(\displaystyle 2367\) также не делится на \(\displaystyle 7\).

Ответ: нет, не делится на \(\displaystyle 7\).

Добрый день!
Сегодня мы продолжим рассматривать признаки делимости.
И начнём мы вот с чего:
Берём последнюю цифру числа, удваиваем её и вычитаем из числа, которое осталось без этой последней цифры. Если разность делится на 7, значит всё число делится на 7. Это действие можно продолжать сколь угодно много раз до того момента, пока не станет понятно: делится или нет число на 7.

Пример: 298109.
1-й шаг. Берём 9, умножаем её на 2 и производим вычитание:
29810-18=29792.

2-й шаг. 29792. Берём 2, умножаем её на 2 и производим вычитание:
2979-4 = 2975.

3-й шаг. 2975. Берём 5, умножаем на 2 и производим вычитание: 297-10=287.
4-й шаг. 287. Берём 7, умножаем на 2 и производим вычитание 28-14=14. Делится на 7.
Значит всё число 298109 делится на 7.

Ещё пример. Число 1102283.
1-й шаг. 110228-3*2 = 110222
2-й шаг. 11022-2*2 = 11018.
3-й шаг. 1101-8*2 = 1085.
4-й шаг. 108-5*2 = 98.
5-й шаг. 9-8*2 = -7. Делится на 7. Значит, 1102283 делится на 7.

Признак делимости на 13. Берём последнюю цифру числа, умножаем её на 4 и складываем с числом без последней цифры. Если сумма делится на 13, значит все число делится на 13.
Это действие можно продолжать сколь угодно много раз до того момента, пока не станет понятно: делится или нет число на 13.
Пример: Число 595166.
1-й шаг. 59516 + 6*4 = 59540
2-й шаг. 5954 + 0*4 = 5954
3-й шаг. 595 + 4*4 = 611
4-й шаг. 61 + 1*4 = 65
5-й шаг. 6 + 5*4 = 26. Делится на 13.
Значит, число 595166 делится нацело на 13.

Ещё пример. Число 10221224.
1-й шаг. 1022122 + 4*4 = 1022138
2-й шаг. 102213 + 8*4 = 102245
3-й шаг. 10224 + 5*4 = 10244
4-й шаг. 1024 + 4*4 = 1040
5-й шаг. 104 + 0*4 = 104
6-й шаг. 10 + 4*4 = 26. Делится на 13.
Значит, число 10221224 делится нацело на 13.
Теперь я бы хотел показать несколько других признаков делимости и не только на простые числа, но и на составные.

Признак делимости на 11. Возьмём число и сложим все цифры, которые стоят на нечётных местах. Затем сложим все цифры числа, которые стоят на чётных местах.
Если разность между первой суммой и второй кратна 11, то всё число делится на 11.
При этом разность может быть как положительна, так и отрицательна.
Примеры: 160369 (Сумма цифр, которые стоят на нечётных местах
1+0+6 = 7.
Сумма цифр, которые стоят на чётных местах 6+3+9 = 18.
18 — 7 = 11. Делится на 11. Значит, число 160369 делится на 11).

Ещё пример: 7527927 (7+2+9+7 = 25. 5+7+2 = 14. 25 — 14 = 11.
Число 7527927 делится на 11).

Признак делимости на 15. Число 15 — составное. Его можно представить в виде произведения простых множителей, а именно 5 и 3.
А мы уже знаем Значит, число делится на 15, если
1. — оно заканчивается на 0 или 5;

Пример: 36840 (Число оканчивается на 0; сумма цифр его равна 3+6+8+4 = 21. Делится на 3.) Значит, все число делится на 15.
Ещё пример: 113445 Число оканчивается на 5; сумма цифр его равна 1+1+3+4+4+5 = 18. Делится на 3.) Значит, всё число делится на 15.

Признак делимости на 12. Число 12 — составное. Его можно представить в виде произведения следующих множителей: 4 и 3.
Значит, число делится на 12, если
1. — 2 последние цифры его делятся на 4;
2. — сумма цифр его делится на 3.
Примеры: 78864 (Две последние цифры — 64. Число, составленное из них, делится на 4; сумма цифр равна 7+8+8+6+4 = 33. Делится на 3.) Значит, всё число делится на 12.
Ещё пример: 943908 (Две последние цифры — 08. Число, составленное из этих цифр, делится на 4; сумма цифр равна 9+4+3+9+0+8 = 33.
Делится на 3.) Значит, всё число делится на 12.